Перейти к содержанию

Решите уравнение 11‌cos‌2‌x=7‌sin(x−π2)−9

а) Решите уравнение $11cos 2x=7sin (x-{π} / {2})-9$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[-π;0]$.


а) $11cos 2x=7sin (x-{π} / {2})-9$,

$11(2cos^2 x-1)=-7cos x-9$,

$22cos^2 x -11+7cos x +9=0$,

$22cos^2 x+7cos x -2=0$.

Обозначим $cos x=t$, $|t|⩽1$.

Тогда уравнение примет вид: $22t^2+7t-2=0$.

Решим его. $22t^2+7t-2=0$,

$D=49+2⋅ 4⋅ 22=225$. $t_{1,2}={-7±15} / {44}$,

$t_1=-{1} / {2}$, $t_2={8} / {44}={2} / {11}$.

$1$. $cos x=-{1} / {2}$, $x=±(π-{π} / {3})+2π n$;

$x=± {2π} / {3}+2π n$, $n∈ Z$.

$2$. $cos x={2} / {11}$, $x=± arccos {2} / {11}+2π k$, $k∈ Z$.

б) Найдём корни этого уравнения, принадлежащие промежутку $[-π;0]$.

$x_1=-π+{π} / {3}=-{2π} / {3}$

$x_2=-arccos {2} / {11}$.

Ответ: а)$± {2π} / {3}+2πn, n∈ Z; ± arccos {2} / {11}+2π k, k∈ Z;б)-{2π}/{3}, -arccos{2}/{11}$