Перейти к содержанию

Решите неравенство 50⋅3x−100+50⋅3−x3x+3−x+2−20+20⋅3x3x+1⩽3x+1⋅5−153x+1

Решите неравенство ${50⋅ 3^x-100+50⋅ 3^{-x}} / {3^x+3^{-x}+2}-{20+20⋅ 3^x} / {3^x+1}⩽ {3^{x+1}⋅ 5-15} / {3^x+1}$.


${50·3^x — 100 + 50 · 3^{-x}}/{3^x + 3^{-x} + 2} — {20 + 20 · 3^x}/{3^x + 1} ≤ {5· 3^{x+1} — 15}/{3^x + 1}$.

Выполним преобразования, обозначив $3^x = t, t > 0$.

${50t +{50}/{t} — 100}/{t + {1}/{t} + 2} — {20 + 20t}/{t + 1} ≤ {15t — 15}/{t + 1}$,

${50(t^2 — 2t + 1)}/{t^2 + 2t + 1} — {20(1 + t)}/{t + 1} ≤ {15(t — 1)}/{t + 1}$

Так как $t > 0$, то ${t^2 + 2t + 1}>0$ и ${t + 1}>0$

Значит мы можем привести неравенство к следующему виду

$50(t^2 — 2t + 1) — 20(t + 1)^2 — 15(t — 1)(t + 1) ≤ 0$,

$50t^2 — 100t + 50 — 20t^2 — 40t — 20 — 15t^2 + 15 ≤ 0$,

$15t^2 — 140t + 45 ≤ 0, 3t^2 — 28t + 9 ≤ 0$.

$3t^2 — 28t + 9 = 0, D = 28^2 — 27 · 4 = 676 = 26^2$.

$t_1 ={1}/{3}, t_2 = 9$.

Решением неравенства $3t^2 — 28t + 9 ≤ 0$ будет $t ∈ [{1}/{3}; 9]$.

Переходя к переменной $x$, получаем $3^x ∈ [{1}/{3}; 9], x ∈ [-1; 2]$.

Ответ: [$-1;2$]