Перейти к содержанию

На доске написано 30 различных натуральных чисел, каждое из которых или оканчивается на 7, или чётное

На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $7$, или чётное. Сумма всех чисел равна $840$. а) Может ли на доске быть выписано ровно $28$ чётных чисел? б) Может ли быть на доске ровно $17$ чисел, оканчивающихся на $7$? в) Найдите наибольшее возможное количество чисел, оканчивающихся на $7$, среди выписанных.


а) Да, может. Пусть выписаны $2$ числа, оканчивающиеся на $7: 7, 17$ и $28$ чётных чисел: $2, 2·2, 2·3, 2·4, . . . 2·26, 2·27$, а так же число $60$.

б) Нет, не может. Сумма $17$ чисел, оканчивающихся на $7$, не меньше, чем $7 + 17 + … + 167 = {7 + 167}/{2}·17 = 1479$. Значит, при $17$ числах с последней цифрой $7$ сумма всех выписанных чисел больше $840$.

в) Пусть на доске $n$ чисел, оканчивающихся на $7$. Тогда остальные $(30 — n)$ чисел чётны. Значит, сумма всех выписанных чисел не меньше чем $7 + 17 + … (7 + (n — 1)·10) + 2·1 + 2·2 + … + 2(30 — n) = {14 + (n — 1)10}/{2}·n + {(30 — n)(31 — n)}/{2}·2 = 6n^2 — 59n + 930$.

Должно выполняться неравенство $6n^2 — 59n + 930 ≤ 840$, то есть $6n^2 — 59n + 90 ≤ 0$. Решим уравнение $6n^2 — 59n + 90 = 0$, получим $n_{1,2} = {59±√{1321}}/{12}$. Неравенство $6n^2 — 59n + 90 ≤ 0$ выполнено при ${59 — √{1321}}/{12} ≤ n ≤ {59 + √{1321}}/{12}$.

Тогда $n ≤ {59 + √{1321}}/{12} ≤ {59 + 37}/{12} = 8$. Так как $n$ натуральное число, то $n ≤ 7$. Количество чисел, оканчивающихся на $7$, должно быть чётным, иначе сумма всех выписанных чисел была бы нечетна. Приведём пример для $n = 6$. Пусть выписаны числа $7, 17, 27, 37, 47, 57$, а так же $21, . . . 2·23$ и число $96$.

Ответ: а)да; б)нет; в)6