Перейти к содержанию

Найдите все значения параметра a, при каждом из которых система уравнений {y=√−8−6x−x2y+ax=a+1 имеет единственное решение

Найдите все значения параметра a, при каждом из которых система уравнений ${tabley=√{-8-6x-x^2}; y+ax=a+1;$ имеет единственное решение.


Построим график уравнения $y = √{−8−6x−x^2}$.

Преобразовав подкоренное выражение, получим: $y = √{1−(x^2 + 6x + 9)}, y =√{1−(x + 3)^2}$.

Если $y ≥ 0$, то $y^2 = 1−(x + 3)^2, (x + 3)^2 + y^2 = 1$.

Если $y < 0$, точек, удовлетворяющих уравнению, нет.

Получилась полуокружность радиусом $1$ с центром в точке $(−3;0)$, лежащая в верхней полуплоскости.

Уравнение $y + ax = a + 1$ запишем в виде $y = −a(x−1) + 1$ — семейство прямых с угловым коэффициентом $−a$, проходящих через точку $M(1;1)$.

Рассмотрим рисунок. Видно, что система имеет единственное решение, если:

1) прямая $MC$ касается полуокружности, поэтому $−a = a_1 = 0$,

2) прямая и полуокружность имеют единственную общую точку, при этом $a_2 < −a ≤ a_3$.

Найдём $a_2$ из условия, что прямая $y = a_2(x−1) + 1$ проходит через точку $A(−4;0)$.

$a_2(−4−1) + 1 = 0, a_2 ={1}/{5}$.

Найдём $a_3$ из условия, что прямая $y = a_3(x−1) + 1$ проходит через точку $B(−2;0)$.

$a_3(−2−1) + 1 = 0, a_3 ={1}/{3}$.

Имеем ${1}/{5} < −a ≤ {1}/{3}$, значит, $−{1}/{3} ≤ a < −{1}/{5}$.

Следовательно, система имеет единственное решение, если $−{1}/{3} ≤ a < −{1}/{5}$ и $a = 0$.

Ответ: $[-{1}/{3};-{1}/{5});0$