Перейти к содержанию

Найдите объём PKBC, если AB=3, BC=5, CD=4, а высота пирамиды PABCD равна 7

В основании четырёхугольной пирамиды $PABCD$ лежит трапеция $ABCD$ с большим основанием $AD$. Известно, что сумма углов $BAD$ и $ADC$ равна $90^°$, плоскости $PAB$ и $PCD$ перпендикулярны основанию, прямые $AB$ и $CD$ пересекаются в точке $K$.

а) Докажите, что плоскость $PAB$ перпендикулярна плоскости $PDC$.

б) Найдите объём $PKBC$, если $AB=3$, $BC=5$, $CD=4$, а высота пирамиды $PABCD$ равна $7$.


а) 1) $∠AKD = 180° — (∠A + ∠D) = 180° — 90° = 90°$.

2) Если две пересекающиеся плоскости перпендикулярны третьей, то они пересекаются по прямой, так же перпендикулярной этой плоскости. Отсюда следует, что так как $PAB ⊥ ABC$ и $PCD ⊥ ABC$, то $PK ⊥ ABC$.

3) Так как $PK ⊥ ABC$, то $PK ⊥ KA$ и $PK ⊥ KD$.

Значит, $∠AKD$ — линейный угол двугранного угла между плоскостями $PAB$ и $PCD$. Следовательно, $PAB ⊥ PCD$.

б) Обозначим $BK = x, CK = y$.

1) $△BKC∼ △AKD$, так как $AD ‖ BC$.

Тогда ${AK}/{BK} = {DK}/{CK}; {AB + BK}/{BK} = {CD + CK}/{CK}; {AB}/{BK} + 1 = {CD}/{CK} + 1; {AB}/{BK} = {CD}/{CK}; {3}/{x} = {4}/{y}; x = {3}/{4}y$.

2) По теореме Пифагора $BK^2 + CK^2 = BC^2; x^2 + y^2=5^2; ({3}/{4}y)^2+y^2=25; {25}/{16}y^2=25; y=4;x={3}/{4}y=3$.

3) $S_{KBC} = {1}/{2}BK·CK = {1}/{2}·3 ·4= 6$.

4) $V_{PKBC} = {1}/{3}S_{KBC}·PK = {1}/{3}·6·7 = 14$.

Ответ: 14