Перейти к содержанию

Одноатомный газ участвует в циклическом процессе, представленном на pV -диаграмме

Одноатомный газ участвует в циклическом процессе, представленном на pV -диаграмме. В состоянии 2 его температура в 4 раза выше, чем в состоянии 1. Определите КПД циклического процесса.


Дано:

$i=3$

$T_2=4T_1$

$η-?$

Решение:

КПД находится как отношение работы за цикл к количеству теплоты, полученной за цикл. В данном случае, теплота получена на участке 1-2. На этом участке давление и объем прямо пропорциональны: ${p_1}/{p_2}={V_1}/{V_2}$

Из уравнения Менделеева-Клайперона: ${p_1V_1}/{T_1}={p_2V_2}/{T_2}$ следует, что $({p_1}/{p_2})^2={T_}/{T_1}$ т.е. ${p_2}/{p_1}={V_2}/{V_1}=√4=2$. $p_2=2p_1, V_2=2V_1$

Работа А за цикл равна: $A={1}/{2}(p_2-p_1)·(V_2-V_1)≈{1}/{2}(p_2V_2-p_1V_1-p_2V_1+p_1V_1)={1}/{2}(2p_1·2V_1-p_1·2V_1-2p_1V_1+p_1V_1)={1}/{2}(4p_1V_1-2p_1V_1-2p_1V_1+p_1V_1)=0.5p_1V_1$

Количество теплоты равно: $Q=A_{1,2}+∆U_{1,2}={p_1+p_2}/{2}·(V_2-V_1)+{3}/{2}(p_2V_2-p_1V_1)={3p_1}/{2}·(2V_1-V_1)+{3}/{2}(2p_1·2V_1-p_1V_1)={3p_1V_1}/{2}+{3·3p_1V_1}/{2}={12}/{2}p_1V_1=6p_1V_1$

Тогда КПД равен: $η={A·100%}/{Q_{пол}}={0.5p_1V_1}/{6p_1V_1}·100%≈8.33%$

Ответ: 8.3