Перейти к содержанию

Плот массой 120 кг движется по реке со скоростью 5,3 м/с

Плот массой 120 кг движется по реке со скоростью 5,3 м/с. С берега на плот бросают груз массой 85 кг, который летит со скоростью 12 м/с, направленной перпендикулярно скорости плота. Определите потери механической энергии при абсолютно неупругом ударе груза о плот.


Дано:

$m_1=120$кг

$υ_1=5.3$м/с

$m_2=85$кг

$υ_2=12$м/с

$∆E-?$

Решение:

Так как удар не упругий, то запишем закон сохранения импульса: $m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=(m_1+m_2)·υ↖{→}$(1). В проекциях на ось Ох и Оу имеем: $Ox: m_1υ_1=(m_1+m_2)·υ·cosα$(2); $Oy: m_2υ_2=(m_1+m_2)·υ·sinα$(3)

Разделим (3) и (2) и найдем угол $α$: ${sinα}/{cosα}={m_2υ_2}/{m_1υ_1}⇒tgα={85·12}/{120·5.3}=1.60377358490566$, откуда $α=arctg(1.60377)≈58.055°$(4). Найдем скорость $υ$ из (1): $υ={m_1υ_1}/{(m_1+m_2)·υ·cosα}={120·5.3}/{205·cos58°}=5.8636м/с$

Запишем закон сохранения механической энергии: ${m_1υ_1^2}/{2}+{m_2υ_2^2}/{2}={(m_1+m_2)·υ^2}/{2}+∆E$(6), где $∆E$ — потери механической энергии. Из (6) имеем: $∆E={m_1υ_1^2}/{2}+{m_2υ_2^2}/{2}-{(m_1+m_2)·υ^2}/{2}$(7). Подставим числовые значения в (7), имеем: $∆E={120·28.09}/{2}+{85·144}/{2}-{(205)·34.382}/{2}=1685.4+6120-3524.135=4281.265=4.3$кДж.

Ответ: 4.3