Перейти к содержанию

Два бруска массой 3,0 кг каждый, лежащие на горизонтальной поверхности, соединены невесомой недеформированной пружиной с жёсткостью, равной 1,0 Н/м

Два бруска массой 3,0 кг каждый, лежащие на горизонтальной поверхности, соединены невесомой недеформированной пружиной с жёсткостью, равной 1,0 Н/м. Коэффициент трения между брусками и поверхностью равен 0,20. Какую минимальную скорость нужно сообщить одному из брусков вдоль пружины, чтобы он, растянув пружину, смог сдвинуть второй брусок?


Дано:

$m_1=m_2=3$кг

$k=1$Н/м

$μ=0.2$

$υ-?$

Решение:

1) Чтобы сдвинуть 2-й брусок, сила упругости должна превысить силу трения скольжения $kx=μ·m_2g$

Мы знаем, что энергия пружины ${kx^2}/{2}$, а движущееся тело ${m·υ^2}/{2}$ должно затратить энергию на работу против сил трения и на сжатие пружины ${m·υ^2}/{2}={kx^2}/{2}+μ·mg·x⇔x={μ·mg}/{k}$. Преобразуя, получим: $υ=μ·g{√{3m}}/{k}=0.2·10{√{3·3}}/{1}=6м/с$

Ответ: 6