Перейти к содержанию

Предположим, что в результате развития нанотехнологий удалось создать дифракционную решётку с периодом 10 нм

Предположим, что в результате развития нанотехнологий удалось создать дифракционную решётку с периодом 10 нм. В вакуумной камере на эту решётку направили в перпендикулярном направлении узкий пучок электронов. Первый дифракционный максимум на экране, параллельном решётке и находящемся за ней на удалении 20 см, наблюдается на расстоянии около 15 мм от оси пучка. Какова скорость электронов? Ответ округлите до десятков. Ответ выразите в (км/с).


Дано:

$d=10^{-8}м$

$L=0.2м$

$l=15·10^{-3}м$

$k=1$

$m_e=9.11·10^{-31}кг$

$h=6.626·10^{-34}Дж·с$

$υ-?$

Решение:

Запишем условие максимумов интенсивности на дифференционной решетке: $d·sinϕ=kλ$, где $λ$ — длина волны. $sinϕ={l}/{L}$(2), так как угол $ϕ$ очень мал. Подставим (2) в (1) и найдем $λ$: $λ={d·l}/{L·k}={10^{-8}·15·10^{-3}}/{0.2·1}=7.5·10^{-10}м$

Учитывая, что импульс фотона равен: $p={h}/{λ}$(3). Подставим числа: $p={6.626·10^{-34}}/{7.5·10^{-10}}=0.88·10^{-24}{кг·м}/{с}$

Учитывая, что импульс электрона равен: $p=m_eυ$, откуда $υ={p}/{m_e}$(4). Подставим числа d (4): $υ={8.8·10^{-25}}/{9.11·10^{-31}}=0.96977·10^6м/с≈970км/с$

Ответ: 970