Перейти к содержанию

На доске выписаны числа 10 и 11

На доске выписаны числа $10$ и $11$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами ($2a+1$) и ($a+b$). Например, из чисел $10$ и $11$ можно получить либо $21$ и $21$, либо числа $21$ и $23$. а) Может ли после нескольких ходов на доске появиться число $95$? б) Может ли после $1003$ ходов на доске появиться число $20018$? в) Укажите наибольшую разность чисел через $2018$ ходов.


а) Да, может. Пусть после первого хода получены числа 21 и 23, после второго 44 и 47, после третьего 91 и 95.

б) Если числа a и b разной чётности, то числа (2a + 1) и (a + b) нечётные, если числа a и b — одной чётности, то (2a + 1) — нечётно, а (a + b) — чётное. Таким образом, после нечётного числа ходов на доске выписаны два нечётных числа и число 20018 выписано быть не может.

в) Если выписаны числа a и b и a $≤$ b, то их разность b-a и следующим ходом будут выписаны числа 2b + 1 и a + b, их разность (b — a + 1) или числа 2a + 1 и a + b, их неотрицательная разность |b — a — 1|.

Таким образом, разность каждый раз изменяется на 1 и будет наибольшей, если каждый ход будет увеличивается на 1. Тогда её значение 1 + 2018 = 2019.

Ответ: а)да; б)нет; в)2019