Перейти к содержанию

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 936 и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?


Разложим число $936$ на простые множители (это может быть сделано единственным образом с точностью до порядка множителей). $936 = 2^3 · 3^2 · 13$.

а) Можно, например, $1, 2, 4, 9, 13$.

б) Предположим, что четыре из пяти различных натуральных чисел, произведение которых равно $936$, составляют возрастающую геометрическую прогрессию. Введём обозначения: $b_1 , b_2 = b_1 · q, b_3 = b_1 · q^2, b_4 = b_1 · q^3$, пятое число обозначим $b_5$.

Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы. То гда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.

Получим:

$936 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^4 · q^6 · b_5 = b_1^4 · ({m}/{n})^6 · b_5 = b_1^4 · {m^6}/{n^6} · b_5$.

Так как $m$ и $n$ — взаимно просты, то и $m^6$ и $n^6$ взаимно просты. Следовательно, всё произведение $b_1 · b_2 · b_3 · b_4 · b_5$ делится на $m^6$, это означает, что в разложении числа $936$ есть простой множитель в 6-ой степени, получили противоречие. Значит, нельзя.

в) Предположим, что пять различных натуральных чисел, произведение которых равно $936$, составляют геометрическую прогрессию, как и в пункте б) введём обозначения: $b_1, b_2 = b_1 · q, b_3 = b_1 · q^2 , b_4 = b_1 · q^3 , b_5 = b_1 · q^4$. Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы.

Тогда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.

Получим:

$936 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^5 · q^{10} = b_1^5 · ({m}/{n})^{10} = b_1^5 · {m^{10}}/{n^{10}}$.

Так как $m$ и $n$ — взаимно просты, то и $m^{10}$ и $n^{10}$ взаимно просты. Следовательно, $b_1^5$ делится на $n^{10}$, а всё произведение $b_1 ·b_2 ·b_3 ·b_4 ·b_5$ делится на $m^{10}$, это означает, что в разложении числа $936$ есть простой множитель в 10-ой степени, получили противоречие. Значит, нельзя.

Ответ: а)да; б)нет; в)нет