Перейти к содержанию

На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит 24 и не равно 1

На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит $24$ и не равно $1$. Среднее арифметическое написанных чисел равнялось $6$. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались не больше $1$, с доски стёрли. а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше $8{,}5$? б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше $9$, но меньше $10$? в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.


а) Пусть первоначально на доске было 15 чисел, равных 2, 5 чисел, равных 41. Их среднее арифметическое равно ${15 · 2 + 5 · 18}/{20} = 6$.

Среднее арифметическое получившихся чисел равно ${5 · 9}/{5} = 9 > 8.5$. Среднее арифметическое оставшихся на доске чисел могло быть больше $16.5$.

б) Пусть с доски было стёрто $k$ чисел, сумма оставшихся была равна $S$, а стала ${S}/{2}$. По условию оказались стёрты только числа получившиеся из 2, поэтому ${S + 2k}/{20} = 6$.

Отсюда, $S = 120 — 2k$.

Среднее арифметическое оставшихся чисел равно ${S}/{2(20 — k)}$. Тогда ${120-2k}/{2(20-k)}={60-k}/{20-k}; 9 < {60 - 2k}/{20 - k)} < 10; 180 - 9k < 60 - k < 200 - 10k$,

${table180 — 9k < 60 - k; 60 - k < 200 - 2k;$ ${table8k > 120; 9k < 140;$ ${tablek > 15; k < 15{5}/{9};$. Таких целых чисел $k$ нет.

Среднее арифметическое оставшихся на доске натуральных чисел не могло оказаться больше 9 и меньше 10.

в) Найдём наибольшее возможное значение среднего арифметического $A = {60 — k}/{20 — k}$ оставшихся чисел в зависимости от целочисленного аргумента $k$ — первоначального количества чисел 2 на доске.

Имеем $A = {60 — k}/{20 — k} = 1 + {40}/{20 — k}$.

Число $A$ будет наибольшим, если наибольшим будет значение аргумента $k$. Оценим это значение. Каждое из первоначально написанных на доске чисел было не более $24$, поэтому $120 — 2k ≤ 24(20 — k)$.

$22k ≤ 360, k ≤ 16{4}/{11}, k ∈ N , k ≤ 16$.

Тогда $A ≤ 1 + {40}/{20 — 16} = 11$.

Приведём пример, показывающий, что среднее арифметическое оставшихся на доске чисел действительно могло стать равным $11$. Пусть первоначально на доске было записано 16 чисел, равных 2, 4 числа, равных 22.

Их среднее арифметическое ${16 · 2 + 4 · 22}/{20} =6$.

Среднее арифметическое оставшихся чисел стало равно ${4 · 11}/{4} = 11$.

Ответ: а)да; б)нет; в)11