Перейти к содержанию

Решите неравенство 4x+27·2x+1822x+8·2x+12≥1+2x−2x−32x+6

Решите неравенство ${4^{x}+27·2^{x}+18}/{2^{2x}+8·2^{x}+12}≥1+2^{x}-{2^{x}-3}/{2^{x}+6}$


${4^x + 27·2^x + 18}/{2^{2x} + 8·2^x + 12} ≥ 1 + 2^x — {2^x — 3}/{2^x + 6}$.

Обозначим $2^x = t, t > 0$. Неравенство примет вид:

${t^2 + 27t + 18}/{t^2 + 8t + 12} ≥ 1 + t — {t — 3}/{t + 6}$,

${t^2 + 8t + 12 + 19t + 6}/{t^2 + 8t + 12} ≥ 1 + t — {t — 3}/{t + 6}$,

$1 + {19t + 6}/{(t + 2)(t + 6)} ≥ 1 + t — {t — 3}/{t + 6}$,

${19t + 6}/{(t + 2)(t + 6)} — t + {t — 3}/{t + 6} ≥ 0$,

$-{t(t^2 + 7t — 6)}/{(t + 2)(t + 6)} ≥ 0$.

Полученное неравенство при условии $t > 0$ равносильно неравенству $t^2 + 7t — 6 ≤ 0$ (так как $t> 0, t + 2 > 0$ и $t + 6 > 0$),

$0 < t ≤ {√{73} - 7}/{2}$,

$0 < 2^x ≤ {√{73} - 7}/{2}$,

$x ≤ log_2 {√{73} — 7}/{2}$.

Ответ: $(-∞;log_{2}{√{73}-7}/{2}]$