Перейти к содержанию

Найдите точку минимума функции y=x2−21x+6+55‌ln‌x

Найдите точку минимума функции $y=x^2-21x+6+55ln x$.


Областью определения функции является промежуток $(0; +∞)$, на котором она дифференцируема. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «минуса» на «плюс».

1. Находим $y′$, пользуясь правилами дифференцирования и формулами производной логарифмической и степенной функций.

$y′ = 2x − 21 + {55}/{x}, y′ = {2x^2-21x+55}/{x}$.

2. Решаем уравнение $y′ = 0; 2x^2 -21x +55 = 0. x_{1,2} = {21 ± √{441 — 440}}/{4} = {21 ± 1}/{4}. x_1 = 5, x_2 = 5.5$. Получаем две стационарные точки.

3. Знак производной совпадает со знаком квадратного трёхчлена $2x^2 -21x+55$. Графиком этого трёхчлена является парабола, ветви которой направлены вверх и корнями являются числа $x_1=5$ и $x_2=5.5$.

Поэтому при $x < 5$ производная имеет знак «плюс», знак «минус» при $5 < x < 5.5$, и знак «плюс» при $x > 5.5$.

  (0;5) 5 (5; 5.5) 5.5 (5.5;+∞)
y′ + 0 0 +
y

При переходе через точку $5.5$ производная меняет знак с «минуса» на «плюс». Поэтому эта точка и будет точкой минимума.

Ответ: 5.5