Перейти к содержанию

Сколько из этих точек лежит на промежутках возрастания функции f(x)

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$. На оси абсцисс отмечено десять точек: $x_1$, $x_2$, $x_3$, … , $x_8$, $x_9$, $x_{10}$. Сколько из этих точек лежит на промежутках возрастания функции $f(x)$?


Так как производная $y=f'(x)$ положительна в точках $x_4$, $x_5$, $x_6$, $x_7$, а в остальных точках — отрицательна, то на промежутке возрастания лежат $4$ точки.

Ответ: 4