Перейти к содержанию

С горки высотой 10 м, расположенной под углом 30◦ к горизонту, скатывается мальчик на санках

С горки высотой 10 м, расположенной под углом 30◦ к горизонту, скатывается мальчик на санках. Какое расстояние проедут санки по горизонтальной поверхности после скатывания с горки, если коэффициент трения на всём пути 0,05? Ответ округлите до десятых


Дано:

$h=10$м

$μ=0.05$

$α=30°$

$g=10м/с^2$

$S_2-?$

Решение:

Запишем второй закон Ньютона: $ma↖{→}=mg↖{→}+F_{тр}↖{→}+N↖{→}$(1). В проекциях на Ох: $ma=mgsinα-F_{тр}$(2), Oy: $O=N-mgcosα$(3), откуда $N=mgcosα$(4). Учитывая, что сила трения $F_{тр}=μN=μmgcosα$(5). Тогда ускорение тела из (2): $a={mgsinα-F_{тр}}/{m}={mgsinα-μmgcosα}/{m}=g(sinα-μcosα)$(6). Путь, пройденный санками по горе $S_1$ равен: $S_1={h}/{sinα}={υ^2}/{2a}$. Откуда квадрат скорости в конце спуска: $υ^2={2ah}/{sinα}={2gh(sinα-μcosα)}/{sinα}=2gh(1-μctgα)$(7). Запишем закон сохранения энергии: ${mυ^2}/{2}-0=F_{тр}·S_2$. Откуда $S_2={mυ^2}/{2F_{тр}}$(8), где $F_{тр}=μmg$. Тогда расстояние, которое санки пройдут по горизонтальному участку до полной остановки: $S_2={mυ^2}/{2F_{тр}}={m·2gh(1-μctgα)}/{2μmg}={h}/{μ}(1-μctgα)$(9).

Подставим числовые значения и найдем $S_2$: $S_2={10}/{0.05}·(1-0.05·ctg30)=200·(1-0.05·√3)=200(1-0.0866)=200(0.91339)=182.679=182.6$м.

Ответ: 182.6